
66 AUGUST 1997 Visual Basic Programmer

I N T E R M E D I A T E

GETT ING STARTED

b y C h r i s B a r l o w

Identify An App’s
Version

Chris Barlow is president and CEO of
SunOpTech, a developer of manufacturing
decision-support applications, including the
ObjectBank, ObjectOrder, and ObjectJob
Systems. Chris holds degrees from Harvard
Business School and Dartmouth College,
where he worked with Drs. Kemeny and Kurtz
on the original BASIC language. You can find
a number of Chris’ articles in VBPJ’s beginner-
oriented sister publica-
tion, Getting Started
with Visual Basic, avail-
able on the newsstand.
Reach Chris at ChrisB@
SunOpTech.com or
through SunOpTech’s
Web server at www
.SunOpTech.com.

Avoid potential

conflicts by creating

an app that reads

and displays version

information for

any file.

Click & Retrieve
Source

CODE!
feature you can tweak. As soon as you compile your program for the second time, you
have a potential problem—multiple versions of your program exist that the user can
run. You need to make sure you can always identify which version of your program the
user is running.

Visual Basic 4 and 5 make it easy to identify your program by adding a version
resource to the EXE file that you can view from Windows Explorer (see Figure 1).
Right-click on any application file to display the Properties window and, if the file
contains a version resource, you’ll see a Version tab that displays information about
the file. You can use the Options button on the Make Project window to modify the
information about your application. Notice you can set Visual Basic to automatically
increment the Revision property each time you compile the application. You can set
the Minor and Major properties as you make substantial changes to your application.
These values are available to your application as properties of the App object. For
example, when your program writes a log file, it can write its version into the log file
so you can track problems generated by different versions of your application.

One of the tricks we use at SunOpTech is to add a top-level menu item at the

nce you start writing programs in Visual Basic, you’ll also start making
changes to these programs. Most developers are like artists working on a
painting—it’s hard to know when to stop. There always seems to be one more
end of the form’s
menu structure. In the
Form Load event, we
set its caption to a for-
matted string of the
application’s version:

Private Sub _
Form_Load()

mVer.Caption = "v" & _
FormatVersion()

End Sub

Function _
FormatVersion() _
As String

FormatVersion = _
App.Major & "." & _
App.Minor & "." & _
App.Revision

End Function

This way, users can
easily tell us the
application’s version
simply by looking at
the screen. If they print
the screen and e-mail
or fax it to us, we can
see the version that
caused the problem.
’s Journal
Windows Explorer File Properties. The Windows
Explorer can display the properties of a file,

including some of the version resource information. Take
advantage of this to ensure you have the correct versions of
EXEs and DLLs on a machine.

FIGURE 1
http://www.windx.comhttp://www.windx.com

I N T E R M E D I A T E

GETT ING STARTED
READ THE VERSION
Often, however, knowing your own
application’s version is not enough. You
might need to check the version of other
application files. With Visual Basic, you
easily can write an application that reads
and displays the version information from
any file. You should encapsulate this func-
tionality into a class in an ActiveX DLL so
you can use it for future applications.

A call to the Windows API, GetFileVer-
sionInfo, returns the version resource in-
formation from any file. The version re-
source is relatively complex, but it’s flex-
ible enough to contain resource informa-
tion in multiple foreign languages. To ac-
commodate this variable information, the
version resource varies in size. There are
http://www.windx.com

FileVer DLL. This ActiveX DLL
ParseResource procedure to searchLISTING 1
several routines in the Windows API to
access parts of this information, but we’ll
use the simpler method of parsing the
returned string of resource information.

Begin by launching Visual Basic and
creating a new ActiveX DLL project. Add
a module to contain these Windows API
declarations:

Declare Function
GetFileVersionInfoSize Lib _

"version.dll" Alias _
"GetFileVersionInfoSizeA" _
(ByVal lptstrFilename As String, _
lpdwHandle As Long) As Long

Declare Function GetFileVersionInfo _
Lib "version.dll" Alias _
"GetFileVersionInfoA" _
Visual Ba

has a single method to return information f
 the string buffer for the resource property, then
(ByVal lptstrFilename As String, _
ByVal dwHandle As Long, ByVal _
dwLen As Long, lpData As Any) _
As Long

The first function returns the size of
the variable-length version resource in
the given file. The second function reads
the version resource from the file into the
lpData buffer. Go to the class module and
change the Name property to cFileVer
and the Instancing property to Multiuse
so other applications can use this class.

The next step in setting up a new class
is to define the properties of the class. I
usually use the Property Get/Let proce-
dures to validate properties of a class.
However, these properties are simply read
Option Explicit
Public sFileName$
Public sFileDateTime$
Public dFileDateTime#
Public lFileLen&
Public bHasVerInfo As Boolean
Public sCompanyName$
Public sFileDescription$
Public sFileVersion$
Public sInternalName$
Public sLegalCopyright$
Public sLegalTrademarks$
Public sOriginalFilename$
Public sProductName$
Public sProductVersion$
Public Major%
Public Minor%
Public Revision%

Public Sub GetFileVersionData()
Dim sVerInfo As String, sTmp As String, lSz&
Dim res As Long, pos As Integer, n As Integer, _
Hwnd As Long

ClearProps
If Len(sFileName) Then
lFileLen = FileLen(sFileName)
dFileDateTime = CDbl(FileDateTime(sFileName))
sFileDateTime = Format$(dFileDateTime, _

"dd-mmm-yy hh:nn:ss")
lSz = GetFileVersionInfoSize(sFileName, Hwnd)
If lSz Then

sVerInfo = String$(lSz, 0)
res = GetFileVersionInfo(ByVal sFileName, _

0&, ByVal lSz, ByVal sVerInfo)
If res Then

bHasVerInfo = True
sCompanyName = ParseResource(sVerInfo, _

"CompanyName", 12)
sFileDescription = ParseResource(sVerInfo, _

"FileDescription", 16)
sFileVersion = ParseResource(sVerInfo, _

"FileVersion", 12)
sInternalName = ParseResource(sVerInfo, _

"InternalName", 16)
sLegalCopyright = ParseResource(sVerInfo, _

"LegalCopyright", 16)
sLegalTrademarks = ParseResource(sVerInfo, _

"LegalTrademarks", 16)
sOriginalFilename = ParseResource(sVerInfo, _

"OriginalFilename", 20)
sProductName = ParseResource(sVerInfo, _
"ProductName", 12)

sProductVersion = ParseResource(sVerInfo, _
"ProductVersion", 16)

pos = InStr(sFileVersion, ".")
If pos > 0 Then

Major = CInt(Left(sFileVersion, pos))
sTmp = Mid(sFileVersion, pos + 1)
pos = InStr(sTmp, ".")
If pos > 0 Then

Minor = CInt(Left(sTmp, pos))
Revision = CInt(Mid(sTmp, pos + 1))

End If
End If

End If
End If

End If
End Sub

Private Function ParseResource(r$, s$, l&) As String
Dim pos&
pos = InStr(r, s)
If pos Then
ParseResource = TrimNul(Mid$(r, pos + l))

End If
End Function

Private Function TrimNul(s$) As String
Dim pos&
pos = InStr(s, Chr$(0))
If pos Then
TrimNul = Left(s, pos - 1)

End If
End Function

Private Sub ClearProps()
lFileLen = 0
dFileDateTime = 0
sFileDateTime = ""
bHasVerInfo = False
sCompanyName = ""
sFileDescription = ""
sFileVersion = ""
sInternalName = ""
sLegalCopyright = ""
sOriginalFilename = ""
sProductName = ""
sProductVersion = ""
End Sub
sic Programmer’s Journal AUGUST 1997 67

rom the version resource of a file. Use the
 fill the class property.

I N T E R M E D I A T E

GETT ING STARTED

Code Online
You can find all the code published in this issue
of VBPJ on The Development Exchange (DevX)
at http://www.windx.com. All the listings and
associated files essential to the articles are
available for free to Registered members of
DevX, in one ZIP file. This ZIP file is also posted
in the Magazine Library of the VBPJ Forum on
CompuServe. DevX Premier Club members ($20
for six months) can get each article’s listings in
a separate file, as well as additional code and
utilities for selected articles, plus archives of
all code ever published in VBPJ and Microsoft
Interactive Developer magazines.

Identify An App’s Version
Locator+ Codes
Listings ZIP file, including Listing 2, which
was excluded for space reasons (free Regis-
tered Level): VBPJ0897

␣ Listings for this article plus the source
code for the ActiveX DLL and the test harness
application (subscriber Premier Level):
GS0897P
from the version resource and the class
never uses their values, so you should
create them as public variables. The first
obvious properties are the fields con-
tained in the version resource:

Public sCompanyName$
Public sFileDescription$
Public sFileVersion$
Public sInternalName$
Public sLegalCopyright$
Public sLegalTrademarks$
Public sOriginalFilename$
Public sProductName$
Public sProductVersion$

You also might want to add properties
to give more complete information to your
application. Use the FileName property
to pass the fully qualified file. The file’s
last modified date/time is readily avail-
able with Visual Basic’s FileDateTime func-
tion, but it’s convenient to have two prop-
erties—one formatted as a string, and one
as a double. Similarly, the FileLen func-
tion returns the file’s length. I also added
a Boolean variable to indicate whether
the file has a version resource and integer
fields for the major, minor, and revision
segments of the file’s version number:

Public sFileName$
Public sFileDateTime$
Public dFileDateTime#
Public lFileLen&
Public bHasVerInfo As Boolean
Public Major%
Public Minor%
Public Revision%

This class will have a single method,
GetFileVersionData, which will make the
calls to the Windows API and fill the class
properties. First, clear the properties; then
make sure that the sFileName property
contains a file. Fill the properties that are
valid for any file, even ones that don’t
have a version resource:

Public Sub GetFileVersionData()
Dim sVerInfo As String, sTmp As _

String, lSz&
Dim res As Long, pos As Integer, n As _

Integer, Hwnd As Long
ClearProps
If Len(sFileName) Then

lFileLen = FileLen(sFileName)
dFileDateTime = CDbl_

(FileDateTime(sFileName))
sFileDateTime = Format$_

(dFileDateTime, _
"dd-mmm-yy hh:nn:ss")

Next, find out the size of the version
resource in the file. If this call returns zero,
68 AUGUST 1997 Visual Basic Programmer’s
the file doesn’t have a valid version resource.
Otherwise, you can create a string variable
the size of the version resource and pass it as
an argument in the next API call:

lSz = _
GetFileVersionInfoSize_
(sFileName, Hwnd)

If lSz Then
sVerInfo = String$(lSz, 0)
res = GetFileVersionInfo(ByVal _

sFileName, 0&, ByVal lSz, _
ByVal sVerInfo)

If this call returns a nonzero value, the
version resource has been loaded into the
string buffer. The data is a typical C struc-
ture format with null characters terminat-
ing the strings. Use the ParseResource pro-
cedure to search the string buffer for the
resource property, then fill the class
property (see Listing 1):

If res Then
bHasVerInfo = True
sCompanyName = ParseResource_

(sVerInfo, "CompanyName", 12)
sFileDescription = ParseResource_

(sVerInfo, "FileDescription", 16)
sFileVersion = ParseResource_

(sVerInfo, "FileVersion", 12)
sInternalName = ParseResource_

(sVerInfo, "InternalName", 16)
LegalCopyright = ParseResource_

(sVerInfo, "LegalCopyright", 16)
sLegalTrademarks = ParseResource_

(sVerInfo, "LegalTrademarks", 16)
sOriginalFilename = ParseResource_

(sVerInfo, "OriginalFilename", _
20)

sProductName = ParseResource_
(sVerInfo, "ProductName", 12)

sProductVersion = ParseResource_
(sVerInfo, "ProductVersion", 16)

Finally, parse the sFileVersion prop-
erty to fill the integer version properties:

pos = InStr(sFileVersion, _
".")

If pos > 0 Then
Major = CInt(Left_

(sFileVersion, pos))
sTmp = Mid(sFileVersion, _

pos + 1)
pos = InStr(sTmp, ".")
If pos > 0 Then

Minor = CInt(Left_
(sTmp, pos))

Revision = CInt(Mid_
(sTmp, pos + 1))

End If
End If

End If
End If
 Journal
End If
End Sub

TEST HARNESS
Now that your class is complete, you need
a small test application to call the method
and display the results (download Listing
2 from The Development Exchange; see
the Code Online box for details). Add a
standard EXE project to your project group,
and place a list-box control and a common
dialog control on the form. Add a File menu
with Open and Exit menu items. In the
Open event, add this code to show the
common dialog and call a procedure to
show the version resource information:

Private Sub mOpen_Click()
CommonDialog1.ShowOpen
ShowFileVersionData _

CommonDialog1.filename
End Sub

In the ShowFileVersionData procedure,
dimension an instance of your cFileVer
class and set the sFileName property.
Then call the GetFileVersionData method
and fill the list-box control with the prop-
erties of the class.

Take a look at different files with your
test harness. You can download the files for
both the class DLL and the test harness
from the Premier Level of The Development
Exchange (see the Code Online box at the
end of the column for details). Now you can
use your new class to get the version infor-
mation from any file and make sure your
application works with the proper versions.
Next month, learn how to use this class to
create a program that always launches the
latest version of your applications.
http://www.windx.com

	Code!

