
134

BEGINNER
GETTING STARTED

Build a powerful utility class by combining the new
Split and InstrRev functions with the FileSystemObject.

Manage Strings
Easily in VB6
any people think computer programmers
spend their days writing complex math-
ematical algorithms. I’ve lost track of theM

number of times folks have told me they’d like to be
programmers, but weren’t very good in math. In
reality, most programmers spend little time writing
math functions. Instead, they write functions to ma-
nipulate strings.

For example, programmers break apart name and
address data blocks into first name, last name, street,
city, and ZIP code to write them into a database, or
they read these fields from a database and join them
together in a report. They break apart a comma-
delimited string into separate database fields, or they
join database fields together to create a delimited
export file. With so much breaking apart and joining
together, programmers need good tools. At the top of
the heap is Visual
Basic 6, which has
some neat new
functions that
make it easy to
manipulate strings
(see Table 1).

Here’s an ex-
ample: Suppose
you have a fully
qualified path and
file name, such as
\\chrisb\c-drive\vb\
apps\vbpj\1998\
9810\filestring.exe,
and you want to
extract only the file
name from the
string. Before VB6,
you needed to
write a procedure
that started at the back of the string and used a
descending For…Next loop, with a Step of –1, to
look for the last backslash in the string:

Function StripPathName(fname As _
String) As String

'returns file name
Dim i As Integer
For i = Len(fname) To 1 Step -1

If Mid(fname, i, 1) = _
"\" Then Exit For

Next
StripPathName = Trim$(Mid$(fname, i + _

1))
End Function

With the new InstrRev function, which returns
the position of the last occurrence of one string
within another, you can do the same thing with one
line of code:

Public Function StripPathName(fname As _
String) As String

StripPathName = Trim$(Mid$(fname, _

InStrRev(fname, "\")))

End Function

The new Split function lets you parse a delimited
string into an array with a single statement. It demon-
strates another useful addition in VB6—functions
can return an array. You can specify the delimiter
used to parse the string and the maximum number of
substrings you want returned. For example, you can
split all the elements of a fully qualified path and file
name into a single one-dimensional array with this
line of code:

ParsePath = Split(sPathAndFileName, "\")

by Chris Barlow and Stan Schultes
Figure 1 Set the Project References. When you
set your project’s references, you instruct Visual Basic to
load the type libraries for these applications and early-
bind your application’s objects to the specific classes.
You need to reference the Microsoft Scripting Runtime
library to use the FileSystemObject and File classes.
www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ VBPJ OCTOBER 1998

Build a File String Class
These new functions are so useful to manipulate
paths and file names that it makes sense to wrap them
into a class you can use in all your applications. If you
combine this class with the new VB6 FileSys-
temObject, which gives several properties and meth-
ods to access the file system, you can build a powerful
utility class. The VB6 FileSystemObject is built into
the Microsoft Scripting Runtime library.

Start VB6 and create an ActiveX EXE project. Select
the References menu item from the Project menu, and
select the Microsoft Scripting Runtime library con-
tained in SCRRUN.dll (see Figure 1). Insert a new class
and name it CFileString. The class has two private
variables: one to store the fully qualified path and
file name, and one to reference the FileSystemObject
(download Listing 1 from the free, Registered Level of
VBPJ OCTOBER 1998␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
DevX; see the Code Online box for details):

Private m_sPathAndFileName As String

Private m_fso As New FileSystemObject

Although the FileSystemObject is only used
within the class, the fully qualified path and file
name are exposed through public Property Get and
Let procedures:

Public Property Get PathAndFileName() _
As String
PathAndFileName = m_sPathAndFileName

End Property

Public Property Let PathAndFileName(_
ByVal NewPathAndFileName As String)
Table 1 New String Functions. VB6 contains 13 new string functions. Several of them operate with dates to return locale-specific month
and weekday names.

Function Returns Syntax

Filter A zero-based array containing a subset of a string Filter(InputStrings, Value[, Include[, Compare]])
array based on a specified filter criteria

FormatCurrency An expression formatted as a currency value using FormatCurrency(Expression[,NumDigitsAfterDecimal
the currency symbol defined in the system [,IncludeLeadingDigit [,UseParensForNegativeNumbers
control panel [,GroupDigits]]]])

FormatDateTime An expression formatted as a date or time FormatDateTime(Date[,NamedFormat])

FormatNumber An expression formatted as a number FormatNumber(Expression[,NumDigitsAfterDecimal
[,IncludeLeadingDigit [,UseParensForNegativeNumbers
[,GroupDigits]]]])

FormatPercent An expression formatted as a percentage FormatPercent(Expression[,NumDigitsAfterDecimal
(multiplied by 100) with a trailing % character [,IncludeLeadingDigit [,UseParensForNegativeNumbers

[,GroupDigits]]]])

InstrRev A Variant (Long) specifying the position of the InStr([start,]string1, string2[, compare])
first occurrence of one string within another

Join A string created by joining a number of substrings Join(list[, delimiter])
contained in an array

MonthName A string indicating the specified month MonthName(month[, abbreviate])

Replace A string in which a specified substring has been Replace(expression, find, replacewith[, start[, count[, compare]]])
replaced with another substring a specified number
of times

Round A number rounded to a specified number of Round(expression [,numdecimalplaces])
decimal places

Split A zero-based, one-dimensional array containing Split(expression[, delimiter[, count[, compare]]])
a specified number of substrings

StrReverse A string in which the character order of a specified StrReverse(string1)
string is reversed

WeekdayName A string indicating the specified day of the week WeekdayName(weekday, abbreviate, firstdayofweek)
135

BEGINNER
GETTING STARTED

136
m_sPathAndFileName = _

Trim$(NewPathAndFileName)

End Property

You can include a method to return the file
name using the StripPathName procedures
and add a StripFileName method that returns
only the path using the new InstrRev function:

Public Function _

StripFileName(Optional _

sFile As String) As String

Dim i As Integer

Dim sFile as String

On Error Resume Next

If Len(sFile) = 0 Then sFile = _
m_sPathAndFileName

i = InStrRev(sFile, "\")
StripFileName = Left$(sFile, _

i - 1)
End Function

It’s also easy to write a Property Get
procedure to return the file’s extension by
using the InstrRev function to search for the
last period in the string. By not including a
Property Let procedure, you can make this
property read-only so the user can’t set the
value of this property. Note that such a
property is similar to having a single method
that returns a value. The choice is really up
to you—there’s no clear distinction be-
tween these implementations. As the devel-
oper, you need to decide which procedure is
easier to understand:

Public Property Get FileExt() _
As String
Dim i As Integer

i =

InStrRev(_
m_sPathAndFileName, ".")

FileExt = _

Mid$(m_sPathAndFileName, _

i + 1)
End Property

You can also easily add the ParsePath
property to the class. This property uses the
new Split function to return an array of all
the drives and folders that make up the fully
qualified path and file name. Notice how
the function definition uses the new As
String() declaration to show an array is
being returned:

Public Property Get ParsePath() As _
String()
ParsePath = _

Split(m_sPathAndFileName, _

"\")

End Property

Another useful method, Com-
pressPath, takes a long, fully qualified
path and file name and returns a com-
pressed version such as \\chrisb\c-
drive\…\filestring.exe. This method
uses the Split function to parse the
path into its individual folders. It then
creates a new four-element array and
copies the first two elements, an ellip-
sis, and the last element into the new
array and uses the new Join function
to create a delimited string from the
new array:

Public Function CompressPath() _
As String
Dim sArray() As String

Fig
harn
Bro
the
Ope
qua

Dim sNewArray(3) As String
Dim i As Integer
sArray = _

Split(m_sPathAndFileName, _
"\")

i = UBound(sArray)
If i > 2 Then

sNewArray(0) = sArray(0)
sNewArray(1) = sArray(1)
sNewArray(2) = "..."
sNewArray(3) = sArray(i)
CompressPath = _

Join(sNewArray, "\")
Else

CompressPath = _
m_sPathAndFileName

End If
End Function

Using the FileSystemObject
Visual Basic 6 lets you use the FileSys-
temObject class to add some functionality
to your class. The FileExists method of
the FileSystemObject class lets you easily
add a Boolean FileExists property to indi-
cate whether the file actually exists at the
specified path:

Public Property Get FileExists() As _

Boolean
FileExists = m_fso.FileExists(_

m_sPathAndFileName)

End Property

Similarly, you can add a FolderExists
property by combining the FileExists
method of the FileSystemObject class with
the StripFileName method of your class:

Public Property Get FolderExists() _
As Boolean
FolderExists = _

m_fso.FolderExists(_
StripFileName())

End Property

The FileSystemObject class can also re-
turn the type of an existing file based on its
Registry setting. This useful capability is
worth adding to your class. For example, a
VBP file has a type of Visual Basic Project.
The FileSystemObject class has a Type prop-
erty, but it only works for an existing file.
You first need to define a temporary variable
as an instance of the Microsoft Scripting
Runtime library’s File class.

The GetFile method of the FileSystemObject
class fills the File class. Take some time to
explore the File class with the Object Browser.
The File class gives you a complete set of
properties for the specified file, including its
type, size, creation date, and so on. It also gives
you a similar set of properties for all the folders
in the path, including a collection of the other
files in the folder. It even has a complete set of
properties for the drive, including the volume
name. This procedure returns only the file type;
you might want to add property procedures to
return some of the file’s other properties:

Public Property Get FileType() As _
ure 2 Create a Test Harness. The test
ess lets you test your class. Notice that the

wse button uses the ShowOpen method of
Common Dialog control to display the File
n dialog and fill the text box with the fully

lified path and file name.
www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ VBPJ OCTOBER 1998

You can find all the code published in
this issue of VBPJ on The Develop-
ment Exchange (DevX) at http://
www.vbpj.com. For details, please see
“Get Extra Code in DevX’s Premier
Club” in Letters to the Editor.

Manage Strings Easily in VB6
Locator+ Codes
Listings for the entire issue, including
Listings 1 and 2 and the simple
FileString class and test-harness ap-
plication (free Registered Level):
VBPJ1098
Listings for this article only, plus the
code files described above (subscriber
Premier Level): GS1098

CODE ONLINE
String

Dim filTemp As File

If FileExists Then

Set filTemp = m_fso.GetFile(_

m_sPathAndFileName)

FileType = filTemp.Type

End If

End Property

One problem when storing files on a disk
is that you must create all the folders in the fully
qualified path individually, beginning with
the top-most folder. Adding a MakePath
method to your class allows you to create all the
folders in a long path with a single call. First,
add the MakePath method that calls a private
MakeFolder method for the complete path:

Public Function MakePath() As _
Boolean
MakePath = _

MakeFolder(StripFileName())
End Function

Then write a MakeFolder procedure that
can call itself recursively. That is, this proce-
dure creates the path that is passed in as an
argument using the CreateFolder method of
the FileSystemObject class. It first creates the
parent folder (if it doesn’t already exist) by
calling itself with the parent folder’s path as an
argument. It uses the FolderExists method of
the FileSystemObject class to test whether the
folder already exists. If you pass in a path with
four new folders, it’s fun to watch this process
in single-step debug mode as it calls itself three
more times to create each parent folder:

Private Function MakeFolder(ByVal _
DirectorySpec As String) As _

Boolean

Dim sDirSpec As String
On Error GoTo MakeFolder_Error
sDirSpec = Trim$(DirectorySpec)

If Len(sDirSpec) Then

MakeFolder = True
If m_fso.FolderExists(_

sDirSpec) Then Exit Function

If Not MakeFolder(_

StripFileName(sDirSpec)) _
Then

MakeFolder = False
Exit Function

End If

m_fso.CreateFolder (sDirSpec)
End If

MakeFolder_Exit:
Exit Function
VBPJ OCTOBER 1998␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
MakeFolder_Error:

MakeFolder = False

Resume MakeFolder_Exit

End Function

Add the Test Harness
At this point, you need a simple form to act as
a test harness for your class, so you can easily
test the class’s properties and methods (down-
load Listing 2 from DevX). Insert a form in
your project and add a TextBox control for
the fully qualified path, file name, and
buttons to test the class’s properties and meth-
ods (see Figure 2). Now create an instance of
your CFileString class to use on the form:

Public MyFile As New CFileString

First, add code in the Click event of the
Load FileString CommandButton to set
the PathAndFileName property of the
CFileString class from the Text1 TextBox
control. Then use the IIf statement to set
the check boxes to indicate whether the file
and folder exist:

Private Sub Command3_Click()
MyFile.PathAndFileName = Text1
Check2 = IIf(MyFile.FileExists, _

vbChecked, vbUnchecked)

Check3 = _
IIf(MyFile.FolderExists, _
vbChecked, vbUnchecked)

Text2 = ""

Label2 = "FileString Loaded!!"
End Sub

You can add code in the other Com-
mandButton Click events to call each of the
CFileString class properties and methods
and display the results. For example, the
FileType button simply displays the FileType
property of the CFileString class:

he VB6T
FileSystemObject
is built into the
Microsoft Scripting
Runtime library.
Chris Barlow is president and CEO of
SunOpTech, a developer of manufacturing
decision-support applications, including the
ObjectBank and the ObjectJob systems.
Chris holds degrees from Harvard Business
School and Dartmouth College, where he
worked with Drs. Kemeny and Kurtz on the
Basic language. Reach Chris at
Chris@VBExpert.com.
␣ ␣ ␣ ␣ Stan Schultes is lead developer at
SunOpTech, where he is responsible for
development and worldwide support of the
ObjectBank and ObjectOrder products. Stan
has 20 years of experience in the computing
field, most spent with a Fortune 200 com-
pany, where he developed manufacturing
systems and was a corporate technology
consultant. Stan holds a degree in computer
engineering from Purdue University. Reach
Stan at Stan@VBExpert.com.

About the Authors

Private Sub Command6_Click()

Text2 = MyFile.FileType

Label2 = "File Type:"

End Sub

After you complete the code for each of the
class’s properties and methods, press the F8
key to single-step through the code and test
how these new VB6 string functions operate
within your class. You might want to extend
the class to expose other properties for the File
object or to call other methods of the
FileSystemObject. When your class is com-
plete, you can add the CLS file to any of your
applications or compile it into an ActiveX
DLL and reference it in your applications. VBPJ
137

