
http://www.windx.com

B E G I N N E R

GETT ING STARTED

by Ch r i s Ba r l ow

Chris Barlow is president and CEO of
SunOpTech, a developer of manufacturing
decision-support and supply chain applica-
tions, including the ObjectBank, ObjectOrder,
and ObjectJob Systems. He holds two U. S.
Patents related to software for decentralized
distributed asynchronous object-oriented
and scheduling systems. Chris, who is a
frequent speaker at VBITS, Tech•Ed, and
DevDays and has been featured in two
Microsoft videos, holds degrees from Harvard
Business School and Dartmouth College.
Reach Chris at ChrisB@SunOpTech.com or
through SunOpTech’s Web server at
www.SunOpTech.com.

Use COM interfaces

to build a document

management app

that converts

text files.

Put COM Interfaces
to Work
icrosoft’s Component Object Model (COM) is the foundation for all ActiveX
servers. One of COM’s most powerful features is its ability to create interfaces
to a COM object. These interfaces allow you to publish a set of properties and

methods that other applications can use to exchange information with your application
through COM. Many books and articles have been written about developing COM
objects and their interfaces. Unfortunately, most are written for C++ programmers and
contain a lot of detail about Globally Unique IDs (GUIDs), the IUnknown interface,
CoCreateClass, and so on.

Visual Basic programmers have it much easier than C++ programmers because VB
handles most of these details. Sometimes it is difficult to cut through all this extra
information to find out what a VB programmer needs to do to create COM interfaces.
It might surprise you that even a beginning programmer can quickly and easily write
a COM interface and ActiveX objects to use it.

At my company, we used VB5 to write a document-management product called
ObjectBank. You can drag and drop any kind of file or OLE object onto the ObjectTeller and
fill out the deposit slip with keywords, which enables you to find the document quickly. In
a document management system, it is vital to index the document correctly. But how can
a program automatically index so many different file formats? The ObjectBank makes use
of the power of COM interfaces to publish an IOBSFileConvert interface. This interface is
a set of properties and methods that provides the index information for a document and
Add Procedures and Properties with Interfaces. You get a special set of
procedures in your code window when you implement a referenced interface.

These procedures let you implement all the properties and methods of the interface.

FIGURE 1
Visual Basic Programmer’s Journal FEBRUARY 1998 73

B E G I N N E R

GETT ING STARTED
automatically adds the keywords to the deposit slip.
This article shows you how to prepare a slightly simplified

version of this interface, called IFileDesc. You can use this as a
template to create your own COM interfaces. You need to create
three VB projects: one for the IFileDesc interface, one to imple-
ment the IFileDesc interface for a specific type of file, and one “test
harness” to emulate the functions of the ObjectBank.

First, create the IFileDesc interface. You can contain this
interface within a type library, but it is easier for you as a VB
programmer to contain this interface in a simple ActiveX DLL. The
DLL will have two classes, but no code. You’ll use the DLL to publish
the standard properties and methods of the IFileDesc class.

Next, start VB5 and create a new ActiveX DLL project. Give the
new project a public class called Class1. Every ActiveX DLL needs
at least one public class, so rename this class to EmptyPublicClass.
Insert another class module, name it IFileDesc, and set its in-
stancing property to PublicNotCreatable. The user will never
create an instance of this class—it is only used as the interface
that other classes implement. Insert this code in this class
module for the public properties and methods of this interface:

Option Explicit
Public SourceFile As String
Public Title As String
Public Subject As String
Public Author As String
Public Characters As Long
Public FullText As String

Public Function GetContent() As Boolean

End Function

Name the project FileDesc, save it, and compile it as
74 FEBRUARY 1998 Visual Basic Programmer’s Journal
FILEDESC.DLL. You’ve completed the COM interface.
Now create a file converter that implements this COM

interface to index memos written in a standard text file format:

Date: November 17, 1997
Author: Chris Barlow
Subject: IFileDesc Interface
Title: Test Text File for Column

This is a test text file for the FileDesc interface column.

The file converter opens this text file, searches for the Date,
Author, Subject, and Title, and returns them through the IFileDesc
interface.

Create a second VB ActiveX DLL project, and name the class
module TxtFileDesc. Select References from the Project menu,
and add a reference to your FileDesc DLL. This reference lets
you implement the IFileDesc interface:

Option Explicit
Implements IFileDesc

Private mAuthor As String
Private mCharacters As Long
Private mFullText As String
Private mSourceFile As String
Private mSubject As String
Private mTitle As String

Click on the left combo box in the code window, and you’ll
see an entry for the IFileDesc interface (see Figure 1). Next, add
code for the properties and methods of this interface. COM
requires every object that implements an interface to imple-
ment every property and method of that interface. You need to
click on each of the items in the right-hand combo box to add all
the properties and methods for the IFileDesc interface to the
code window. Note that the names of these procedures are
prefaced with the name of the interface being implemented,
allowing your project to implement different interfaces that
have the same name for a property or method.

Most of the properties of this interface are read-only∇that is,
you only need to add code in the Property Get procedure, and
you can leave the Property Let procedure empty. Add code for
all the properties using the Author property as a guide (for the
complete code, see Listing 1 on the free, Registered Level of The
Development Exchange):

Private Property Get IFileDesc_Author() As String
IFileDesc_Author = mAuthor
End Property

Private Property Let IFileDesc_Author(ByVal RHS As String)
End Property

The SourceFile property is a special case because it needs
code for both its Get and Let procedures. The calling application
uses this property to pass the name of the file to be converted.
This enables you to write and read the file:

Private Property Let IFileDesc_SourceFile(ByVal RHS As _
String)

mSourceFile = RHS
End Property

Private Property Get IFileDesc_SourceFile() As String
Create a Test Harness Form. Every ActiveX object
that you develop needs to have a test harness so you can

test the properties and methods of your component. This form
implements the OLEDragDrop event so you can drag files from
Windows Explorer to the form.

FIGURE 2
http://www.windx.com

B E G I N N E R

GETT ING STARTED

Code Online
You can find all the code published in this
issue of VBPJ on The Development Exchange
(DevX) at http://www.windx.com. For de-
tails, please see “Get Extra Code in DevX’s
Premier Club” in Letters to the Editor.

Put COM Interfaces to Work
Locator+ Codes
Listings for the entire issue, plus code for
the VB procedures for the IFileDesc inter-
face (free Registered Level): VBPJ0298
Listings for this article only, plus the code
files mentioned above (subscriber Premier
Level): GS0298
IFileDesc_SourceFile = mSourceFile
End Property

The GetContentMethod performs the
real work in the converter. This proce-
dure opens the text file and parses the
content to locate the Subject, Author, and
Title. It also stores the full text of the file
in the FullText property, and the number
of characters in the Characters property.
This procedure also checks the length of
the private mSourceFile variable to make
sure this property has been set, then
opens the file for binary read and gets a
free file handle with the FreeFile state-
ment. Note that the Input statement can
read the entire file contents into a buffer
variable by using the LOF function to get
the length of the file. Next, the method
sets the FullText property to this input
buffer and uses the Instr and Mid func-
tions to search for keywords in the text.
Finally, the method sets the Characters
property to the length of the text and sets
the method to return True:

Private Function _
IFileDesc_GetContent() As Boolean

Dim fn As Integer, buf As String
If Len(mSourceFile) Then

fn = FreeFile
Open mSourceFile For Binary As #fn
buf = Input(LOF(fn), fn)
mFullText = buf
mSubject = Mid(mFullText, InStr_

(mFullText, "Subject:") + 9, 20)
mAuthor = Mid(mFullText, InStr_

(mFullText, "Author:") + 8, 15)
mTitle = Mid(mFullText, InStr_

(mFullText, "Title:") + 7, 40)
mCharacters = Len(mFullText)
IFileDesc_GetContent = True

End If
End Function

Name the project TextFileDesc, save
it, and compile it as TXTFILEDESC.DLL.
You’ve now written a COM object file
converter that implements your IFileDesc
COM interface. Next, you need to write a
test harness—a small application that pro-
vides just enough functionality to test
your ActiveX objects. Start a new VB Stan-
dard EXE project and name it
DemoIFileDesc. Select References from
the Project menu and add a reference to
your FileDesc DLL, so you can call ActiveX
objects that implement this interface. Add
label and text-box controls to the form for
the properties of the IFileDesc interface
(see Figure 2).

Press F7 to display the code window
for the form, and add code. The first line
of code defines a private collection vari-
able to hold the class name for your file
http://www.windx.com
converters and the file extensions of the
types of file they handle. The file exten-
sion serves as the key to the collection.
Your test harness can have only one file
converter for each file extension, and your
procedure must be able to locate the
proper file converter’s class name by us-
ing the file extension as a key. Use the Add
method of the collection to add the text
file converter to your test harness. You
would store this information in the Regis-
try in a real application. When your user
registers a new file converter, your app
loads it from the Registry:

Private mFileDescs As New Collection

Private Sub Form_Load()
mFileDescs.Add _

"SunFileDesc.TxtFileDesc", "TXT"
End Sub

The functionality for your test harness
goes in the form’s OLEDragDrop event. This
event fires when you drag one or more files
from the Windows Explorer, Desktop, or
any OLE-compatible application. The event
passes a DataObject that contains a Files
collection, which stores the file names and
paths of the dropped files.

The trick to using a COM interface
from VB is to define two variables—one
for the interface (iConv), and one for the
COM object that implements the inter-
face (oConv). You can early-bind the iConv
variable to the IFileDesc interface because
you reference it in your project. You must
dimension the oConv variable as “Ob-
ject,” however, so you can late-bind it to
many different file converters. Your ap-
plication does not know which file con-
verters are available until it loads them
from the Registry:

Private Sub Form_OLEDragDrop(Data As _
DataObject, Effect As Long, Button _
As Integer, Shift As Integer, X As _
Single, Y As Single)

Dim SourceFile, Ext$, i%
Dim oConv As Object
Dim iConv As IFileDesc

This next section of code sets up a
For…Next loop to loop through each file
in the DataObject’s Files collection and
determine its file extension:

On Error Resume Next
For Each SourceFile In Data.Files

Text1(0) = SourceFile
For i = Len(SourceFile) To 1 Step -1

If Mid(SourceFile, i, 1) = "." _
Then
Exit For

Else
Visual Basic
Ext = Mid(SourceFile, i, 1) _
& Ext

End If
Next

Next, the procedure creates an in-
stance of the proper file converter object
by using the file extension as a key to the
mFileDesc collection. It uses the
CreateObject statement to get the text
class name of the appropriate file con-
verter so it can be passed as an argument:

Set oConv = _
CreateObject(mFileDescs(Ext))

If Err Then Exit Sub

Now set the iConv variable equal to
the oConv variable. This allows you to
call the methods and properties of the
loaded file converter pointed to by oConv
from the iConv IFileDesc interface. Set the
file name to the SourceFile property and
call the GetContent method of the
IFileDesc interface. Retrieve the proper-
ties from the interface, and set the text
controls on your test harness form:

Set iConv = oConv
iConv.SourceFile = SourceFile
iConv.GetContent
Text1(1) = iConv.Author
Text1(2) = iConv.Characters
Text1(3) = iConv.Subject
Text1(4) = iConv.Title
Text1(5) = iConv.FullText
Set iConv = Nothing
Set oConv = Nothing

Next
End Sub

That’s all there is to it. Now you can
extend your test harness to handle other
types of files by simply adding another
class to TXTFILEDESC.DLL or by creating
a new ActiveX DLL. Try out your new
procedure on some of your files and see
how easy it is to create COM interfaces to
your applications.
 Programmer’s Journal FEBRUARY 1998 75

