
70

BEGINNER
GETTING STARTED

Use the Visual Basic ToolBar control to give users
easy access to your application’s features.

by Chris Barlow

Add a Toolbar
To Your App

WHAT YOU NEED

VB5 or VB6
application’s features without navigating menus. If
you want your Visual Basic app to look and feel like
professional applications, you need to add a toolbar.
Fortunately, VB’s ToolBar control is easy to use. In
this column, I’ll show you how to create a simple text
editor and add a toolbar to it.

First, start a new Visual Basic Standard EXE
project and click on the Components menu item on
the Project menu. This ensures that the Common
Dialog, Rich Textbox, and Common Controls are
selected (see Figure 1). (The controls will have slightly

Y ou probably haven’t seen a recent professional
Windows application without a toolbar.
Toolbars enable users to quickly access your
different names if you’re using VB5 instead of VB6.)
Draw a RichTextBox and CommonDialog control
on the form and use the Menu Editor to create a
standard File menu with New, Open, Save, Print, and
Exit menu items (see Figure 2).

Creating menus can be time-consuming because,
even with the VB6 menu editor, you have to type all
the menu properties for each form. To save time, you
can make a shortcut for creating menus. First, create
a form with standard Windows menus including File,
Edit, and Help menus. Add this code to implement
the standard New, Open, and Save menu items, then
save both the FRM and FRX files into the Visual
Basic\Template\Forms folder:

Private Sub mnuNew_Click()

RichTextBox1.Text = ""

End Sub

Private Sub mnuOpen_Click()

CommonDialog1.ShowOpen

RichTextBox1.LoadFile (CommonDialog1.FileName)

End Sub

Private Sub mnuSave_Click()

CommonDialog1.ShowSave

RichTextBox1.SaveFile (CommonDialog1.FileName)

End Sub

Anytime you need a form with standard menus, use
the Add Form menu item on the Project menu to
choose your form templates, including your new menu
form. Next, add this code to enable the Print menu:

Private Sub mnuPrint_Click()

On Error Resume Next

CommonDialog1.Flags = cdlPDReturnDC + _

cdlPDNoPageNums
Figure 1 Select the Controls. You can display this dialog by
right-clicking on the control toolbox or using the Ctrl-T shortcut key.
Uncheck the “Selected Items Only” checkbox to see all the
controls registered on your system.
www.vbpj.com␣ ␣ ␣ ␣ •␣ ␣ ␣ VBPJ FEBRUARY 1999

CommonDialog1.CancelError = True

If RichTextBox1.SelLength = 0 Then

CommonDialog1.Flags = CommonDialog1.Flags + _

cdlPDAllPages

Else

CommonDialog1.Flags = CommonDialog1.Flags + _

cdlPDSelection

End If

CommonDialog1.ShowPrinter

If Err = 0 Then

Printer.Print ""

RichTextBox1.SelPrint Printer.hDC

Printer.EndDoc

End If

End Sub

Notice that the fourth line sets the CancelError
property to True so the CommonDialog control
returns an error if the user clicks on the Cancel
button. Then the 12th line prints only if no error is
set. Now that you have a simple text editor, you can
add a toolbar.

More Complicated, But Worth It
Because the ToolBar control features a hierarchical
object model, it’s more complicated to use than the
RichTextBox and CommonDialog controls. The
ToolBar control contains a Buttons collection of
Button objects with their own properties and meth-
ods. To make everything a bit more complex, the
images on the button faces aren’t contained within
the ToolBar control, but within the ListImages col-
lection of an ImageList control.

I’ll go through each step in detail to help you add
a toolbar to your app. (For a short list of the steps, see
the sidebar, “How to Add a Toolbar to Your Applica-
tion.”) Draw an ImageList control on your form,
right-click on the control to display the Properties
dialog, go to the Images tab, and click on the Insert
Picture button. If you look in the Bitmaps\TlBr_W95
folder located under the folder where VB is installed,
you’ll find a good selection of bitmaps for the toolbar
buttons. Insert pictures for New, Open, Save, Print,
Find, Left, Center, and Right. Go to the Colors tab
and change the BackColor property to the system
color “Menu Bar” and the MaskColor property to the
system color “Button Face.” If you don’t adjust the
colors, you’ll find the images are dithered when they
appear on the toolbar buttons, and they’ll be difficult
to see on the button faces. You can use the Add
method of the ListImages collection to add other
images to the ImageList control at run time.

Now that you have a collection of images for your
toolbar, add the ToolBar control to your form and
right-click on the control to display its Properties
dialog. On the General tab, change the ImageList
property to bind the toolbar to your ImageList con-
trol. Add all the images you need to your ImageList
VBPJ FEBRUARY 1999␣ ␣ ␣ ␣ •␣ ␣ ␣ ␣ www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
control before you bind it to the toolbar, because you
can’t make changes to a bound ImageList control.

Each toolbar has a collection of Button objects. You
can add Button objects to the toolbar at run time with
the Add method of the ToolBar control’s Buttons
collection. To add a button at design time, click on
Insert Button on the Buttons tab of the ToolBar
control’s Properties dialog. Button objects can contain
an image, a caption, or both. You probably won’t need
to design a toolbar with both images and captions
because each Button object has a ToolTipText prop-
erty. Set the Key property of each Button object so you
can identify which button the user has clicked on.

Insert five buttons on your toolbar, set their Key
and ToolTipText properties to New, Open, Save,
Print, and Find, respectively, and bind them to images
one through five of the ImageList control. Click on the
Apply button to see your new toolbar.

You can design a better toolbar by using the
Button object’s Style property. The default style is a
normal button, just like the buttons now on
your toolbar. To separate the Print button slightly

from the New,
Open, and Save
buttons, insert an-
other button with
a Style property of
“tbrSeparator.”

On the Buttons
tab, move back to
the Save button
by changing the
index to 3, and
click on Insert But-
ton. Change the
Style property to
“tbrSeparator” and
insert separator
buttons between
the Print and Find
buttons and after
the Find button.

Buttons can
also be part of a
button group: a
group of buttons
with a “tbrBut-
tonGroup” style
surrounded by
buttons with a
“ tbrSepara tor”
style. You can press
only one group
button at a time.
For example, if the
text in your Rich-
TextBox control
can be only left-
Figure 2 Create a File Menu. This menu editor has changed
little since VB1. Save yourself some time and put your common
forms in your Template folder so you don’t have to create a menu
from scratch for each project.
Figure 3 The Finished Project. Notice the placement of
the buttons and their images on the completed toolbar. You’ve
added New, Open, Save, Print, and Find buttons, as well as
buttons to left-justify, center, or right-justify your text.
71

O␣ ␣ ␣ ␣ ne of the cool things you get with the
ToolBar control is the ability to let the user
customize the toolbar by reordering and
removing buttons.

72

BEGINNER
GETTING STARTED
aligned, centered, or right-aligned, then us-
ers can press only one of the Left, Center, or
Right buttons. Add three more buttons with
Key and ToolTipText properties of Left,
Center, and Right to your toolbar and set
their Style properties to tbrButtonGroup.

Buttons can also have a Style property of
“tbrPlaceholder” that enables you to add
other controls to the toolbar. Add a combo
box that enables the user to set the size of the
font. Add two more buttons to your
toolbar—one with a “tbrSeparator” style
and the other with a “tbrPlaceholder” style.
Set the Key property of the last button to
“combo1,” and the width property to 1,000.
Then draw a ComboBox control on the
toolbar. You can add code now that your
toolbar design is complete (see Figure 3).

The Code Behind the Bar
Add code to initialize the toolbar’s combo box
with font size data, and make sure it’s located
on the placeholder button of the toolbar. In
the Form_Load event, add this code:

Private Sub Form_Load()

'Initialize the combo box

Show

With Combo1

.Width = _

Toolbar1.Buttons("combo1").Width

.Left = _
Toolbar1.Buttons("combo1").Left

.Top = _

Toolbar1.Buttons("combo1").Top

.AddItem "10"

.AddItem "12"

.AddItem "14"

.AddItem "16"

.ListIndex = 0

.ZOrder

End With

End Sub

You need to copy this code to the
Form_Resize event so the combo box always
stays in the proper place on the toolbar:

Private Sub Form_Resize()

With Combo1

.Width = _

Toolbar1.Buttons("combo1").Width

.Left = _

Toolbar1.Buttons("combo1").Left

.Top = _

Toolbar1.Buttons("combo1").Top

End With

End Sub

It’s easy to handle the toolbar clicks
because you already have menu items for
most of these functions, which include New,
Save, and Open. You simply call these menu
functions. The toolbar ButtonClick event
passes the Button object the user clicked on,
so you can write a Select statement based on
the Key property of the button:

Private Sub Toolbar1_ButtonClick(ByVal _

Button As Button)

Select Case Button.Key

Case "New": mnuNew_Click

Case "Open": mnuOpen_Click

Case "Save": mnuSave_Click
Case "Print": mnuPrint_Click

Case "Find": mnuFind_Click

Case "Left": _

RichTextBox1.SelAlignment = _

rtfLeft

Case "Center": _

RichTextBox1.SelAlignment = _

rtfCenter

Case "Right": _

RichTextBox1.SelAlignment = _

rtfRight

End Select

End Sub

The only new code—the Case “Left,” Case
“Center,” and Case “Right” statements—sets
the alignment property of the RichTextBox
control based on which button the user clicked
on. This changes the alignment of the selected
paragraphs or, if no text is selected, the current
paragraph. Setting each button’s Value prop-
erty within the RichTextBox control’s
SelChange event sets these alignment buttons
to display the text’s actual alignment as you
move through the text. Notice how the “Case
Else” statement “unpresses” all buttons in the
group if the alignment is other than left,
centered, or right:

Private Sub RichTextBox1_SelChange()

Select Case RichTextBox1.SelAlignment

Case rtfLeft

Toolbar1.Buttons("Left").Value = _

tbrPressed

Case rtfCenter

Toolbar1.Buttons("Center").Value = _

tbrPressed

Case rtfRight

Toolbar1.Buttons("Right").Value = _

tbrPressed

Case Else

Toolbar1.Buttons("Left").Value = _
1. Add an ImageList control to

How to Add a Toolbar to
Your Application

your form.

2. Insert pictures for the button
faces into the ListImages
collection of the ImageList
control.

3. Add a ToolBar control to
your form.

4. Set the ToolBar ImageList
property to bind the toolbar
to your ImageList control.

5. Add Button objects to the
toolbar.

6. Set each button’s properties
to bind the button image to
the proper image.

7. Write code to handle toolbar
button clicks.
www.vbpj.com␣ ␣ ␣ ␣ •␣ ␣ ␣ VBPJ FEBRUARY 1999

tbrUnpressed

Toolbar1.Buttons("Center").Value = _

tbrUnpressed

Toolbar1.Buttons("Right").Value = _

tbrUnpressed

End Select

Combo1.Text = RichTextBox1.SelFontSize

End Sub

The last line of code in the
RichTextBox1_SelChange() procedure uses
the SelFontSize property to display the font
size as the cursor moves through the text. It’s
easy to add code to change the font size of
the selected text when the user makes a
selection from the combo box on your
toolbar. Simply set the SelFontSize property
of the RichTextBox control to the default
value of the combo box and return the focus
to the RichTextBox control:

Private Sub Combo1_Click()

RichTextBox1.SelFontSize = Combo1

RichTextBox1.SetFocus

End Sub

VBPJ FEBRUARY 1999␣ ␣ ␣ ␣ •␣ ␣ ␣ ␣ www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
You now have a fully functional toolbar
for your application (download Listing 1
from The Development Exchange; see the
Download Free Code box for details). One of
the cool things you get with the ToolBar
control is the ability to enable the user to
customize the toolbar by reordering and re-
moving buttons. If you set the AllowCus-
tomize property of the toolbar to True, the
user can double-click on the toolbar at run
time to bring up a customize dialog where he
or she can modify the toolbar you set up at
design time. You can even add code to the
toolbar Change event to use the SaveToolBar
method to store the current toolbar settings
in the Registry, then use the RestoreToolBar
method to reload it the next time the user
runs your application. VBPJ

About the Author

Chris Barlow, a recognized expert in the
Internet, Web, messaging, and applications
development fields, is a frequent speaker at
VBITS, Tech•Ed, and DevDays and has

Download the code for this issue of
VBPJ free from http://www.vbpj.com.

To get the free code for this entire
issue, click on Locator+, the right-
most option on the menu bar at the top
of the VBPJ home page, and type
VBPJ0299 into the box. (You first
need to register, for free, on DevX.)
The free code for this article includes
all code listings, plus the toolbar appli-
cation.

To get the code for this article only,
available to DevX Premier Club mem-
bers, type VBPJ0299GS into the
Locator+ field.

DOWNLOAD FREE CODE

been featured in two Microsoft videos. Chris
holds degrees from Harvard Business School
and Dartmouth College. Reach him at
Chris@VBExpert.com or on the Web at http://
www.VBExpert.com.

73

